Vitamin C Clock Reaction Initial Rates: Teacher Guide

Preparing Reagents:

<table>
<thead>
<tr>
<th>Material</th>
<th>Instructions to make 1 L of each solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 M H₂O₂</td>
<td>Start with 3 % H₂O₂ (can be purchased at a drugstore). This solution is approximately 1 M. Dilute by 4 (e.g. mix 250 ml of this solution and 750 ml of deionized water) to achieve the desired concentration.</td>
</tr>
<tr>
<td>0.25 M NaI</td>
<td>Sodium iodide has a molecular mass of 149.89 g/mol. To prepare a 0.25 M NaI solution, dissolve 37.5 g in 1 L of deionized water.</td>
</tr>
<tr>
<td>0.05 M Vitamin C</td>
<td>Vitamin C, also known as L-ascorbic acid, has a molecular mass of 176.12 g/mol. To prepare a 0.05 M vitamin C solution, dissolve 8.8 g in 1 L of deionized water.</td>
</tr>
<tr>
<td>1 M acetic acid with starch</td>
<td>Acetic acid (glacial) has a molar mass of 60.05 g/mol and a density of 1.05 g/cm³. To make the desired solution, combine 57 ml of acetic acid with 143 ml of spray starch (can be bought in a can from a drugstore) and 800 ml of water.</td>
</tr>
</tbody>
</table>

Of these solutions, you will need the following amount per set of experiments:
- 25.5 ml of 0.25 M H₂O₂
- 25.5 ml of 0.25 M NaI
- 5.5 ml of 0.05 M Vitamin C
- 5.5 ml of 1 M acetic acid with starch

Other materials (per set of experiments):
- deionized water (15 ml)
- 2 1 ml syringes
- 3 5 ml syringes
- 11 large test tubes or vials (each tube or vial should have a volume of at least 15 ml for adequate mixing)
- a stopwatch

References