Kinetics: From Clock Reactions to Challenges in Catalysis

Theodor Agapie

August 16, 2011

Summer Chemistry Workshop

Outline

Kinetics -- applications in a wide variety of fields:

- Atmospheric chemistry (reactions of various gases or pollutants in the atmosphere): Depletion of O_3 layer by chlorofluorocarbons (CFC)
- Biology: Reaction mechanisms of enzymes / Inhibitors / Selectivity / Regulation / Signaling
- Materials: Polymerization / Plastics with different physical properties
- Electron transfer: in proteins that are part of the cellular respiratory chain, corrosion of metallic surfaces
- Conversion of fuels: fuels from solar energy, alternative liquid fuels

Nuclear chemistry

Catalysis

Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002, 124, 1378-1399.

Catalysis: Lowering of Activation Barriers

Catalysis: Lowering of Activation Barriers

Catalysis: Lowering of Activation Barriers

Possible Chemical Scenarios

No Catalyst Present

Catalyst B Present

- One product => No separation
- Energy economical
- 100 % yield in desired product
- No detrimental byproducts

(Some) Types of Catalysts

- Reusable

Small Molecule / Homogeneous Catalysts:

- *Disadvantages
- Often unstable
- Difficult to separate
- Often not reusable
- Often well-defined
- Easier to study and
- rationally improve

- Often require partners
- Often expensive

*Advantages

- Evolved to get the job done (under the right conditions)

Catalysis -- Applications

Fertilizers

Biochemical Processes

Construction Materials

Energy Storage and Conversion

Pharmaceuticals

Complex Catalysts in Natural Product Biosynthesis

Hormone biosynthesis

Intermediate in NO biosynthesis

Tainer, J. A. et al. Science 1998, 279, 2121.

L-DOPA

- Essential biological role in the synthesis of certain neurotransmitters
- Treatment for:
 - Parkinson's disease
 - Dopamine responsive distonia
- Nobel Prize awarded for the general applications in synthesis

н COOH HO HN H COCH₃ HO

L-DOPA: Catalytic Synthesis

- Essential biological role in the synthesis of certain neurotransmitters
- Treatment for:
 - Parkinson's disease
 - Dopamine responsive distonia
- Nobel Prize awarded for the general applications in synthesis

L-DOPA: Catalytic Synthesis

- Essential biological role in the synthesis of certain neurotransmitters
- Treatment for:
 - Parkinson's disease
 - Dopamine responsive distonia
- Nobel Prize awarded for the general applications in synthesis

Synthesis of Plastics

$$H_2O_2(aq) + 3I^-(aq) + 2H^+(aq) \rightarrow I_3^-(aq) + 2H_2O$$

Method of detection is required for kinetics measurements (UV-Vis, IR, NMR spectroscopy, etc -- we'll visit some of the facilities tomorrow).

Detection of of I_3^- as a complex with starch - visually detected color change.

Figure 3. Starch/iodine

Clock reactions with sharp color changes allows for easier detection of end-points in kinetic runs.

Vitz, E. J. Chem. Ed. 2007, 84(7), 1156-1157.

Clock Reaction: Consumption of a Known Amount of Product

In the present case, Vitamin C reacts with the product, I_2 , delaying the appearance of the color of the I_3^{-1} /starch complex.

$$H_2O_2(aq) + 3I^-(aq) + 2H^+(aq) \rightarrow I_3^-(aq) + 2H_2O$$

The clock reaction allows for initial rate determination. If a solution containing 0.001 M of Vitamin C takes 20 s to change color, then the initial rate is calculated as:

$$R = -\frac{\Delta [H_2 O_2]}{\Delta t} = \frac{\Delta [Vit C]}{\Delta t} = \frac{0.0010M}{20s} = 5.0 \, x \, 10^{-5} \, M \, / \, s$$

Vitz, E. J. Chem. Ed. 2007, 84(7), 1156-1157.

$$H_{2}O_{2}(aq) + 3I^{-}(aq) + 2H^{+}(aq) \rightarrow I_{3}^{-}(aq) + 2H_{2}O$$

$$R = -\frac{\Delta[H_{2}O_{2}]}{\Delta t} = k[H_{2}O_{2}]^{a}[I^{-}]^{b}[H^{+}]^{c}...$$

$$R_{1} = -\frac{\Delta[H_{2}O_{2}]}{\Delta t} = k[H_{2}O_{2}]^{a}[I^{-}]^{b}[H^{+}]^{c}...$$

$$R_{2} = -\frac{\Delta[H_{2}O_{2}]}{\Delta t} = k[H_{2}O_{2}]^{a}[I^{-}]^{b}[H^{+}]^{c}...$$

$$\frac{R_{1}}{R_{2}} = \frac{k[H_{2}O_{2}]^{a}[I^{-}]^{b}[H^{+}]^{c}_{1}}{k[H_{2}O_{2}]^{a}[I^{-}]^{b}[H^{+}]^{c}_{1}} = \frac{[H_{2}O_{2}]^{a}_{1}}{[H_{2}O_{2}]^{a}_{2}} = \left[\frac{[H_{2}O_{2}]_{1}}{[H_{2}O_{2}]_{2}}\right]^{a}$$

$$\ln\left[\frac{R_{1}}{R_{2}}\right] = a \ln\left[\frac{[H_{2}O_{2}]_{1}}{[H_{2}O_{2}]_{2}}\right]$$

Plotting of $\ln(R)$ vs $\ln[H_2O_2]$ will will give a straight line with slope *a*.

Vitz, E. J. Chem. Ed. 2007, 84(7), 1156-1157.

 $\Delta[Vit C]$

$$H_{2}O_{2}(aq) + 3I^{-}(aq) + 2H^{+}(aq) \rightarrow I_{3}^{-}(aq) + 2H_{2}O$$

$$R = -\frac{\Delta[H_{2}O_{2}]}{\Lambda} = k[H_{2}O_{2}]^{a}[I^{-}]^{b}[H^{+}]^{c}...$$

$$\ln\left[\frac{R_{1}}{R_{2}}\right] = a \ln\left[\frac{[H_{2}O_{2}]_{1}}{[H_{2}O_{2}]_{2}}\right]$$

This equation states mathematically that doubling the concentration of H₂O₂ will:

(a) have no effect on a process which is zero order with respect to H_2O_2 (a=0) (b) double the rate of a process which is first order with respect to H_2O_2 (a=1) OR

(c) quadruple the rate of a process which is second order with respect to H_2O_2 (a=2)

Experimentally:

$$\frac{\mathrm{d}\left[\mathrm{I}_{3}^{-}\right]}{\mathrm{d}t} = k_{1}^{0}\left[\mathrm{H}_{2}\mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right] + k_{1}\left[\mathrm{H}_{2}\mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]\left[\mathrm{H}^{+}\right]$$

Two competing mechanisms... Dependence on acid concentration not discussed today. Vitz, E. J. Chem. Ed. 2007, 84(7), 1156-1157.

$\Delta[Vit C]$

$$H_2O_2(aq) + 3I^-(aq) + 2H^+(aq) \rightarrow I_3^-(aq) + 2H_2O$$

$$R = -\frac{\Delta[H_2O_2]}{\Delta t} = k[H_2O_2]^a [I^-]^b [H^+]^c \dots$$

$$\mathbf{lnk} = -\frac{\mathbf{E_a}}{\mathbf{RT}} + \mathbf{lnA}$$

If other parameters are kept constant, initial rates can be substituted for rate constants in the Arrhenius equation.

$$\ln\left[\frac{R_1}{R_2}\right] = \frac{-E_a}{R}\left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

Plotting of ln(R) vs 1/T will will give a straight line with slope $-E_a/R$.

Vitz, E. J. Chem. Ed. 2007, 84(7), 1156-1157.

Vitamin C Clock Reaction Initial Rates: Teacher Guide

Preparing Reagents:

Material	Instructions to make 1 L of each solution				
$0.25 \mathrm{M} \mathrm{H}_2\mathrm{O}_2$	Start with 3 $\%$ H ₂ O ₂ (can be purchased at a drugstore). This solution				
	is approximately 1 M. Dilute by 4 (e.g. mix 250 ml of this solution				
	and 750 ml of deionized water) to achieve the desired concentration.				
0.25 M NaI	Sodium iodide has a molecular mass of 149.89 g/mol. To prepare a				
	0.25 M NaI solution, dissolve 37.5 g in 1 L of deionized water.				
0.05 M Vitamin C	Vitamin C, also known as L-ascorbic acid, has a molecular mass of				
	176.12 g/mol. To prepare a 0.05 M vitamin C solution, dissolve 8.8 g				
	in 1 L of deionized water.				
1 M acetic acid with	Acetic acid (glacial) has a molar mass of 60.05 g/mol and a density of				
starch	1.05 g/cm^3 . To make the desired solution, combine 57 ml of acetic				
	acid with 142.8 ml of starch (can be bought in a can from a				
	drugstore) and 800 ml of water.				

Of these solutions, you will need the following amount per set of experiments:

- $25.5 \text{ ml of } 0.25 \text{ M H}_2\text{O}_2$
- 25.5 ml of 0.25 M Nal
- 5.5 ml of 0.05 M Vitamin C
- 5.5 ml of 1 M acetic acid with starch

Other materials (per set of experiments):

- deionized water (15 ml)
- 2 1 ml syringes
- 3 5 ml syringes
- 11 large test tubes or vials (each tube or vial should have a volume of at least 15 ml for adequate mixing)
- a stopwatch

References

- 1. Wright, Stephen W. J. Chem. Ed. 2002, 79(1), 41-43.
- 2. Vitz, E. J. Chem. Ed. 2007, 84(7), 1156-1157.

Today's Experiment

Trial	Vitamin C	Acetic	Iodide	$H_2O(ml)$	$H_2O_2(ml)$	Time (sec)
	(ml)	Acid (ml)	(ml)			
1	0.5	0.5	3	0	3	
2	0.5	0.5	2.5	0.5	3	
3	0.5	0.5	2	1	3	
4	0.5	0.5	1.5	1.5	3	
5	0.5	0.5	1	2	3	
6	0.5	0.5	0.5	2.5	3	
7	0.5	0.5	3	0.5	2.5	
8	0.5	0.5	3	1	2	
9	0.5	0.5	3	1.5	1.5	
10	0.5	0.5	3	2	1	
11	0.5	0.5	3	2.5	0.5	

Vary only one parameter (concentration) per experiment.

Determine time required for color change (I_2 /starch complex formation, corresponding to complete Vitamin C consumption)

Plotting of $\ln(1/t)$ vs $\ln[H_2O_2]$ or $\ln[I^-]$ will will give a straight line with slope corresponding to the order in reagent.

 $\mathbf{A} \rightarrow \mathbf{P}$

Plotting [A] vs t will give a straight line with slope -k.

Plotting ln[A] against time will give a straight line with slope -k.

A plot of 1/[A] vs t produces a straight line with slope k and intercept $1/[A]_o$.

Clock Reaction Experiment: From Initial Rates to Integrated Rate Expressions

Trial	Vitamin C	Acetic	Iodide	$H_2O(ml)$	$H_2O_2(ml)$	Time (sec)
	(ml)	Acid (ml)	(ml)			
1	3	0.5	3	0	1.5	
2	2.5	0.5	3	0.5	1.5	
3	2	0.5	3	1	1.5	
4	1.5	0.5	3	1.5	1.5	
5	1	0.5	3	2	1.5	
6	0.5	0.5	3	2.5	1.5	

Pseudo-first order in I⁻.

Vary the concentration of Vitamin C.

Remaining concentration of H_2O_2 at color change can be calculated. Time at color change is measured.

Use integrated rate law plots to determine order in H_2O_2 and the rate constant.

Best fit will give the order in H_2O_2 and the rate constant.

Solution A: 4.0 M H₂O₂ (all solutions must be at room temp for the demo to work!) Solution B: 0.2 M KIO₃, 0.077 M H₂SO₄ Solution C: 0.15 M malonic acid, 0.020M MnSO₄, starch $5 H_2O_2(aq) + 2 IO_3^-(aq) + 2 H^+(aq) \longrightarrow I_2(aq) + 5 O_2(g) + 6 H_2O(l)$ $5 H_2O_2(aq) + I_2(aq) \longrightarrow 2 IO_3^-(aq) + 2 H^+(aq) + 4 H_2O(l)$ Overall: $2 H_2O_2(aq) \longrightarrow O_2(g) + 2 H_2O(l)$

More partial reactions (the first can go by two mechanisms):

$$IO_{3}^{-} + 2 H_{2}O_{2} + H^{+} \longrightarrow HOI + 2 O_{2} + 2 H_{2}O$$
$$HOI + CH_{2}(CO_{2}H)_{2} \longrightarrow ICH(CO_{2}H)_{2} + H_{2}O$$

Shakhashiri, B. Z. Chemical Demonstrations: A Handbook for Teachers of Chemistry; University of Wisconsin: Madison, 1983; Vol 2, 248.

More partial reactions (the first can go by two mechanisms): $IO_3^- + 2 H_2O_2 + H^+ \longrightarrow HOI + 2 O_2 + 2 H_2O$ $HOI + CH_2(CO_2H)_2 \longrightarrow ICH(CO_2H)_2 + H_2O$ First step: High I⁻ concentration, slow non-radical mechanism: $IO_3^- + I^- + 2 H^+ \longrightarrow HIO_2 + HOI$ $HIO_2 + I^- + H^+ \longrightarrow 2 HOI$ $HOI + H_2O_2 \longrightarrow I^- + O_2 + H^+ + H_2O$ Low I⁻ concentration, fast radical mechanism (autocatalytic): $IO_3^- + HIO_2 + H^+ \longrightarrow 2 IO_2^+ + H_2O$ $IO_2 + Mn^{2+} + H_2O \longrightarrow HIO_2 + Mn(OH)^{2+}$ $Mn(OH)^{2+} + H_2O_2 \longrightarrow Mn^{2+} + H_2O + HOO'$ 2 HOO' \longrightarrow H₂O₂ + O₂ $2 \operatorname{HIO}_2 \longrightarrow \operatorname{IO}_3^- + \operatorname{HOI} + \operatorname{H}^+$

Second step:

Fast:
$$I^- + HOI + H^+ \longrightarrow I_2 + H_2O$$

 $I_2 + CH_2(CO_2H)_2 \longrightarrow ICH(CO_2H)_2 + H^+ + I^-$