Ch112 Inorganic Chemistry October 9th, 2018 In-Class Problem A

Boranes, compounds of B and H, can exhibit a variety of structures. One interesting borane form is the dodecaborane dianion, $[B_{12}H_{12}]^{2-}$, which adopts an icosahedral structure. Replacement of one BH unit in $[B_{12}H_{12}]^{2-}$ with a CH moiety gives rise to a monoanion carborane $[B_{11}CH_{12}]^{-}$. On the left, each boron is given a unique label. On the right, symmetry equivalent borons are given identical numerical labels.

Using the eleven boron atoms as the basis set, fill out the transformation matrix for the C_{5^2} operation (clockwise rotation).

Ch112 Inorganic Chemistry October 9th, 2018 In-Class Problem B

Boranes, compounds of B and H, can exhibit a variety of structures. One interesting borane form is the dodecaborane dianion, $[B_{12}H_{12}]^{2-}$, which adopts an icosahedral structure. Replacement of one BH unit in $[B_{12}H_{12}]^{2-}$ with a CH moiety gives rise to a monoanion carborane $[B_{11}CH_{12}]^{-}$. On the left, each boron is given a unique label. On the right, symmetry equivalent borons are given identical numerical labels.

Using the eleven boron atoms as the basis set, fill out the transformation matrix for the σ_v operation through the plane perpendicular to the page.

Ch112 Inorganic Chemistry October 9th, 2018 In-Class Problem C

Boranes, compounds of B and H, can exhibit a variety of structures. One interesting borane form is the dodecaborane dianion, $[B_{12}H_{12}]^{2-}$, which adopts an icosahedral structure. Replacement of two BH units in $[B_{12}H_{12}]^{2-}$ with CH moieties gives rise to neutral compounds called carboranes $[B_{10}C_2H_{12}]$.

The *ortho* isomer is shown below. On the left, each boron is given a unique label. On the right, symmetry equivalent borons are given identical numerical labels.

Using the ten boron atoms as the basis set, fill out the transformation matrix for the C₂ operation.

		-			-		B1		
							B2		
							В3		
			-				B4		
 			· · · · · · · · · · · · · · · · · · ·				B5		
			-			•	B6	=	
 							B7		
 	 · · ·	,		;			B8		
 			;	 ;			B9		
 	 			 			B10		

Ch112 Inorganic Chemistry October 9th, 2018 In-Class Problem D

Boranes, compounds of B and H, can exhibit a variety of structures. One interesting borane form is the dodecaborane dianion, $[B_{12}H_{12}]^{2-}$, which adopts an icosahedral structure. Replacement of two BH units in $[B_{12}H_{12}]^{2-}$ with CH moieties gives rise to neutral compounds called carboranes $[B_{10}C_2H_{12}]$.

The *ortho* isomer is shown below. On the left, each boron is given a unique label. On the right, symmetry equivalent borons are given identical numerical labels.

Using the ten boron atoms as the basis set, fill out the transformation matrix for the σ_v operation through the plane containing both carbon atoms.

