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x H3B—NH3 - 3x H; + (BN)x

MW (H3;B-NHs) = 30.87 g/mol
MW(H3) = 2.02 g/mol
3(2.02)/30.87 = 19.6%
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Methyl is always C"', H' with a tetrahedral configuration; bond angles each around 109.5°
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All C angles 120°
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S tetrahedral

All S angles 109.5°

All O angles <109.5°
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Tert butyl's is always center C', methyl-C™", H' with a tetrahedral configuration on all C and bond angles each around 109.5°
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Problem 3 (2 points)

A) The synthesis of polynitrogen compounds is of particular interest towards the development of
new high-energy materials. Nitrogen-nitrogen single and double bonds are significantly weaker in
energy compared with the triple bond in N2, leading to decomposition of polynitrogen compounds
to N2 to be very favorable. The N7O" ion has C2v symmetry and features an N7 chain. Draw at least
three Lewis dot structures. Compound (C2H2N3)NN(NsC2H2) displays an Ns chain and two five-
membered rings. Draw at least two Lewis dot structures.

Lewis Dot Structures of [N-O]*
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For more information, c.f. Christe et al. Inorg. Chem. 2010, 49, 1245.

Lewis Dot Structure of (CszNs)NN(NaCsz)
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For more information, c.f. Pang and coworkers, J. Am. Chem. Soc. 2010, 132, 12172-12173.

B) The Ns* cation can be prepared using the reaction below:
[N2F][SbFe] + HN3s = [Ns][SbFe] + HF

Provide at least two Lewis dot structures for ions [N2F]* and [Ns]*. Note that [Ns]" consists of an
Ns chain. Provide an example of an abundant and stable neutral molecule isoelectronic to [N2F]".



Lewis Dot Structures of [N2F]*
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@/N\@ - @@//N\@ > @@//N\@
N Ny N7 Ny N7 NS
N7 SN N7 SN N7 SN

® .
@@//N\\@@ B //N\" @ - g ANTC)
O_N Na ,N N\\ N Na
N N N N
® @ ©
N PN . = N ® PN . ® NG
N7 SN ®_N7 Ny ZNTON @
(N7 SN :NZ SN : :NZ SN

Example of stable, neutral molecules isoelectronic to [N2F]*: CO2

C) The crystal structure of [Ns][Sb2F11] was reported in 2001 by Christe and coworkers (JACS,
2001, 6308). The [Ns]" ion reacts with reagents such as NO, NOz, and Brz, as shown below. For
each of the following reactions assign the oxidation states of each atom and indicate which is the
oxidant and which is the reductant.

NO + [N5][SbFg] —>» [NOJ[SbFg] + N,
N +2 N average +0.2 N +3 N O
o -2 Sb +5 o -2
F -1 Sb +5
reductant oxidant F -1
Br, + [N5][SbFg] —>  [Bry][SbFg] + N
Br 0 N average +0.2 Br average +0.5 N O
Sb +5 Sb +5
F -1 F -1
reductant oxidant

D) One very high energy target molecule is NsNs, a theoretical salt consisting of the Ns* cation
and the cyclic N5~ anion. Similar five-membered cyclic species, such as the cyclopentadienyl
anion, are common ligands in organometallic chemistry. While Ns™ has only been detected in the
gas phase, from high energy electrospray ionization of 4-pentazolyl-phenol, solid state-
characterization of the corresponding P2Ns™ anion was reported by Velian and Cummins in 2015
(Science, 2015, 1001). For each of the following cyclic compounds, draw at least two Lewis dot
structures, predict if aromatic, and describe distortion from the idealized pentagonal geometry.
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E) Also related to CsHs', N2Ss?* and N2Ses?* have been structurally characterized. N2Sz?* is
prepared in the following reaction, in which none of the original N-S linkages are completely
broken:

[SNS][AsFs] + [NS][AsFs] > [N2S3][AsFs]2

For each of the cations in the equation above provide at least two Lewis dot structures.
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Reference: Brooks et al. Inorg. Chem. 1994, 33, 6230



Problem 4 (2 points)
i) F-H ii) F-Li iii) CI-H

LUMO* (o)

HOMO* ()

(degenerate set of two molecular orbitals)

HOMO-1 (o)

HOMO-2 ()

Bonding in LiF is ionic due to the large energy difference between Li orbitals (-5.39 eV, 2s) and F
orbitals (—40.17 eV, 2s and —18.65 eV, 2p). The lowest energy MOs contain contribution from the
most electronegative atom F, while the highest energy MOs contain contributions from Li, the
least electronegative atom.

Bonding in HF is more covalent due to the closer energy difference between H orbitals (—13.61 eV,
1s) and F orbitals: hence, there is more mixing in the MOs. In HCI, bonding is even more covalent
that in HF, as the Cl orbitals (—25.23 eV, 3s, and —13.67 eV, 3p) are closer in energy to the H
orbitals. While there is more mixing, the lowest energy orbitals still contain a larger contribution
from the more electronegative atom Cl and the higher energy orbitals contain more contribution
from H.
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